Survey of Humanoid Robots

Jacky Baltes
Intelligent Agent Laboratory
University of Manitoba
Winnipeg, Manitoba

http://www.cs.umanitoba.ca/~jacky
Email: jacky@cs.umanitoba.ca
Outline

• Humanoid robots
 – Approaches to humanoid robot design
 – Survey of Humanoid Robots
• Why work on humanoid robots
 – Research issues
 – Applications
• Humanoid robots at the University of Manitoba
• Humanoid robotics competitions as benchmarks
• Conclusions
Humanoid Robots 2003

- More than 30 teams worldwide
- Minimalistic designs: Vickie, Tao-Pie-Pie
- Small RC-servo based robots: Robo Erectus, RoboSapiens, Elvina, Footprints
- Small DC Motors: HansaRam, Rock Steady, Sony DXR4
- Medium: ISAAC
- Large: Honda Asimo, Murphy
Humanoid Robots 2003

- Competitors at FIRA-2003

Tao-Pie-Pie
University of Manitoba, Canada

HansaRam,
KAIST Deajon,
Korea

RoboSapiens
NUS
Singapore
Humanoid Robots

- Many teams in Asia
 - Korea, Japan, Singapore
- Few teams in Europe and North America
- Frankenstein Syndrome
 - Man vs. Machine
 - Slaves to the machines ...
- Engineering approach
 - Requirement analysis
 - Specification
 - Few needs for humanoid robots
Research issues in humanoid robotics

- Control of systems with many degrees of freedom (DOFs) and many sensors
- Motion planning
- Human Computer Interaction
Research Challenges
Gait Generation

- Walking gait generation
- Many approaches
 - Static/Dynamic balance
 - Center of mass (CoM), zero moment point (ZMP)
- Practical solutions exist for smooth even surfaces
- Future
 - Running
 - Uneven terrain
 - Motion planning for complex motions
Research Challenges

Human Computer Interaction

- Human Computer Interaction
 - Humanoid robots are more easily accepted
- Look like humans
- Interact like humans
 - Speech generation
 - Gesture generation
 - Speech recognition
 - Gesture recognition
Research Challenges
Human Computer Interaction

- MIT pervasive computing initiative
 - COG
- Form an emotional bond with objects
 - Emphatic response
- Very strong response in humans
 - Personify objects (e.g., computers)
 - Eliza, Alice
Research Challenges

Robotic Soccer

• Localization (Where am I on the playing field)
• Vision: Object tracking
• Local path planning
• These issues are not unique to humanoid robots
 - RoboSot (any local vision robot)
• Solutions for localization from other robotic soccer teams
Applications for Humanoid Robots

- Report to the European Union
- Short Term (2 – 5 years)
 - Entertainment
- Medium Term (5 – 10 years)
 - Special purpose assistants: Children, Elderly, Disabled
 - Office or construction assistants
- Long Term (10 – 100 years)
 - Personal assistant
 - Search and Rescue
 - All work done by robots
State of the Art 2003

- Open loop control for walking on smooth even terrain
- Active balancing used in the competition
 - Force sensors: HOAP, Sony, Morph 3
 - Gyroscopes: active balance on Tao-Pie-Pie
 - Accelerometers: Honda Asimo
Robotics at the University of Manitoba

- Dissertation in planning: Multi-strategy planning system DoLittle
- Robotics to ground research into AI
- Bought a camcorder and some toy cars and got an old computer
- Need wide angle lense
- Do not modify the environment/equipment
Robotics at the University of Manitoba

- But children can play soccer with RC cars.
- Use coarse actuators and inaccurate sensors and you will end up with a robust design.
Robotics at the University of Manitoba

- Reinforcement learning controller for car-like mobile robots
- Case-based path planning for highly dynamic domains
- Orientation and robot id
- Ego-motion estimation from lines
Humanoid Robotics at the University of Manitoba

• In 2001, started work on a cheap humanoid robot
• Minimalistic iterative design
• What is the minimum number of DOFs to allow a balanced walk?
• RX-78 and Zaku
Humanoid Robotics at the University of Manitoba

- Based on Gundam toy robots
- Implemented frontal sway (RX78) and shuffle (Zaku)
- Plastic broke too easily
Tao-Pie-Pie

• 3rd generation
• Eyebot controller
 – MC68332, 1MB Ram, 1 MB Rom, 3 FPS
• Computer vision (from local vision robots)
 – Color predicates
 • 15 parameter model:
 • R, G, B, R-G, R-B, G-B, R_n, G_n, B_n
 – Segmentation
 • Compactness
 • Aspect ratios
Tao-Pie-Pie 2002

- Cyclical pattern generator (CPG)
- Open-loop control for smooth even terrain
- Graduate student algorithm
- Walking gaits: straight, turns, kick
- Desired control points for servos
- Used bezier curves/ cubic splines to interpolate control curves
 - Minimizes 2^{nd} derivative
 - Smooth curve
Tao-Pie-Pie 2003

- Closed loop control of walking gait using feedback from the gyroscopes
- More by Sara McGrath in the next session
Future for Humanoid Robots

- Advances in material sciences
- Better actuators
- Better power sources
 - Hydrogen fuel cells
- Better sensors
 - More types
 - Cheaper
- Better processing
 - Moore's law (quadruples every three years)
- More I/O Bandwidth
Goals of the HuroSot Competition

- Attract more teams
- Disseminate information to new teams
 - TPP/HIRO website
 - http://www.cs.umanitoba.ca/~jacky
- Provide benchmark problems for humanoid robots
- Publicity event
Robotics Competitions as Benchmarks for Research

- Benchmarks are important since they drive research and development
- Competitions are the only “real-world application” for robotics
- Performance of complex systems is hard to measure
The Used Robot Salesman

- Automobiles are also complex systems
- Which car is the best car?
- Some performance ratings
 - Top speed
 - Acceleration 0 – 100 km/h
 - Braking distance
 - Fuel efficiency
 - Robustness
- Subjective write-ups
Example Benchmarks
Micro-processors

- Computer systems
 - Too complex.
 - Application benchmarks (similar to robotic soccer)
 - Provides little guidance for research

- Computer architecture researchers are faced with two problems
 - Make computer run faster
 - Explain this to the marketing department
Processor Benchmarks

• MIPS and MFLOPS ratings (1980s)
• Humanoid robots
 – Vision frame rate, control cycle time, path planning time
• Undefined functions
 – What is the function of the video processor
• Processor performance is determined by
 – number of instructions,
 – average clocks/instruction,
 – and clock freq.
Processor Benchmarks

- Toy programs (1980s)
- AI toy problems (Blocksworld)
- Dhrystones and Wheatstones
- Easy to analyze and optimize
- DEC C Compiler -dhrystones
- SPEC benchmark group

- Quake 3 benchmark and ATI
- Change rendering of a scene
Benchmark Conclusions

- **Focused**
 - Measure specific system feature
- **Complete**
 - Complete application from the domain
 - Individual features are evaluated in context
- **Variety**
 - Single applications can easier be optimized.
Benchmark Conclusions

- Open
 - No special interest groups
- Portable
 - Applicable to many different systems
 - Generic tasks
- Adaptive
 - Must be adapted to new technology and development
- Debugging
 - Hidden bias must be removed
HuroSot Events in 2003

- Robot Dash
 - Stability
 - Speed of walking gait
- Penalty kick
 - Balance
 - Power of kick
- Obstacle run
 - Mobility
 - Perception
- Winner's Gala
 - Small demonstration by teams
 - New events for next year
New Events for the Future

- Balance and walking gait
 - '04 Stair climbing (up/down)
 - '04 Lift and carry (ball)
 - '06 Uneven terrain (gravel)
- Motion planning
 - '05 Robot limbo
 - '05 Lay down and get up
 - '06 Stack blocks
- Modify penalty kick
 - '04 free kick, 1 vs 1
 - '05 Team play
Conclusions

- Overview of current humanoid robotics research
- Development of robotics research at the University of Manitoba
- Robotic soccer competition as benchmarks for research
- Future plans for the HuroSot competition