Brooks’ Subsumption Architecture

Jacky Baltes

University of Auckland

Email: j.baltes@auckland.ac.nz

Web: www.tcs.auckland.ac.nz/~jacky

March 7, 2003
Brooks’ Subsumption Architecture

- One of many possible frameworks for the design of the control of an intelligent agent.

-
Requirements

- Act appropriately in a real time, dynamic environment
- Robustness with respect to failures (Hardware/Software). Graceful degradation.
 - Sensors
 - Actuators
 - Control systems
- Generation of goals/subgoals
- Arbitrate/combine multiple goals
- Balance between strategic and reactive systems
Abstraction: The Crux of AI

- AI researchers: Don’t get credit for their work
- Ever heard of an AI failure?
- Using abstraction, a problem is composed into different levels.
 - The ones that are handled by the AI system (AI component)
- Blocks world: Hundreds of papers and work. Good success, but doesn’t scale up to the real world.
- Representation: Propositional, first order logic. How do you represent a car?
- Wishful semantics: (on blockA table) \(=\) (on xyz yyx)
- Claim 1: Must build complete systems. Incremental approach
- Claim 2: Must act in the real world
Subsumption Architecture

- Time scale of evolution: 3.5 billion cells, 2.5 million first humans, 5000 years ago writing.

- **Functional** decomposition:
 - Planning, execution, navigation, reasoning, vision
 - Interfaces between the different layers?

- Independent **Activities** (Complete execution from the sensors to the actuators)

- Activities are goal oriented

- Different layers of behaviors

- Higher layers can override lower layers (Side-taps of connections in the lower levels)
 - Suppression: Side tap at the input. Route message to higher layers and suppress sensor for a certain time period. Turn off sensors
 - Inhibition: Side tap at the output side. Prevent messages from being sent on this wire for a certain time.
- Activity at a higher layer is a subset of a lower layer
- Each activity consists of finite state machines, registers and computational units. Slow asynchronous communication channel.
Mobile robot example

- Layer 0: Avoid obstacles
 - Sonar: generate sonar scan
 - Collide: send HALT message to forward if about to run into an object
 - Feel force: Compute overall repulsive force. This vector is passed to run-away, which sends it to the turn cell.

- Layer 1: Wander behavior
 - wander generates a random heading
 - avoid reads repulsive force and new heading and generates new heading and feeds it to turn and forward.

- Layer 2: Exploration behavior
 - whenlook notices idel time and looks for an interesting place. Inhibits wandering
 - path-plan sends new direction to avoid.
 - integrate monitors path and sends them to the path plan.
Disadvantages of the Subsumption Architecture

- No internal representation. Reasoning, Inference
- No strategic planning
- Learning
- Switching between behaviors (Hormon Theory)
- Too reactive
- How to create new goals?

Open Questions:
- Maximum complexity of layers before the interaction is too complex.
- Maximum number of layers
- Maximum reasoning capability of the whole system