74.795 Local Vision: Edge Detection

Jacky Baltes
Department of Computer Science
University of Manitoba
Email: jacky@cs.umanitoba.ca
WWW: http://avocet.cs.umanitoba.ca
Optical Illusions: Subjective Contours

Kanizsa figure: subjective contours
Optical Illusions: Lines
System Model

- Image analysis
 - Preprocessing: remove noise and irrelevant information
 - Data reduction: reduce the data in the spatial or frequency domain
 - Feature analysis: extracted features are examined and evaluated
Zooming and Interpolation

- Zero order hold: repeat previous pixel values
- First-order hold: Bi-linear interpolation
 - First expand rows, then columns

Enlarge an N×N sized image to a size of (2N)×(2N).
Arbitrary Zooming Factors

Take two adjacent values and **linearly interpolate** more than one value between them (let \(k \) be the enlargement number)
1. Subtract the two adjacent values
2. Divide the value by \(k \)
3. Add the result to the smaller value, and keep adding the result from the second step in a running total until all \((k-1)\) intermediate pixel locations are filled.

\[
\begin{align*}
125 + 5 & \rightarrow 130 + 5 \rightarrow 135 \rightarrow 140 \\
(140-125)/3 & = 5
\end{align*}
\]
Translation

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
T_x \\
T_y
\end{bmatrix} + \begin{bmatrix}
x \\
y
\end{bmatrix}
\]
Rotation

- Clockwise rotation of the image

\[
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{bmatrix} \ast \begin{bmatrix} x \\ y \end{bmatrix}
\]

- 3 x 3 matrix to represent 2D rotation and translation in homogenous coordinates
Edge Detection

- Colours are very susceptible to lighting
- An important pre-processing step is edge detection
- How do we find an edge?
 - Sharp contrast in the image
 - Derivative of the image function $I(i,j)$
 - Approximate derivative with $I(i+1,j) - I(i-1,j)$
Convolution

- Edge Detection and many other image preprocessing steps can be implemented as a convolution
- A convolution mask $M(r,c)$ is a matrix that is applied to each pixel in the image
- Specifies weights of the neighbors

\[
\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} I(r-x, c-y)M(x, y)
\]
Convolution

- What is the output of $[0, 255, 0, 0, \ldots]$?
- -255?
- Use divisor and offset to normalize result of convolution to 0..255
- How to deal with colour images?
 - Convert to grey scale
 - Handle each channel separately
Sobel Edge Detection

- To reduce noise, average over several rows
- Weigh rows differently
- Divisor = 8, Offset = 128
Sobel Edge Detection

- Use separate convolution matrices for horizontal and vertical

<table>
<thead>
<tr>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 0 +1</td>
<td>-1 -2 -1</td>
</tr>
<tr>
<td>-2 0 +2</td>
<td>0 0 0</td>
</tr>
<tr>
<td>-1 0 +1</td>
<td>+1 +2 +1</td>
</tr>
</tbody>
</table>
Convolution

- Many other filters can be implemented efficiently as convolution
- One problem: what to do at the borders
- What does the following filter do?

<table>
<thead>
<tr>
<th>+1</th>
<th>+1</th>
<th>+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>
Blurring (Simple)

- Blurring is used to reduce noise in the image

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
</tbody>
</table>
Convolution

- If the coefficients of the mask sum to greater than 1, average brightness is increased, otherwise decreased.
- If the coefficients are alternating positive and negative, then edges are enhanced.
- If the coefficients are all positive, then the image will be blurred (edges will be reduced).
Template Matching Convolution

- Find Specific features in the image

Divisor = 4
Median Filter

• Blurring (Mean filter) is susceptible to single pixel outliers
• Median filter replaces the central pixel with the median of its neighbouring pixels

Sort the value – $3, 3, 4, 4, 5, 5, 5, 6, 7$
"What are the objects to be analyzed?"

Pre-processing, image enhancement

Binary operations

Morphological operations and feature extraction

Classification and matching
Segmentation

- **Full segmentation**: Individual objects are separated from the background and given individual ID numbers (labels).

- **Partial segmentation**: The amount of data is reduced (usually by separating objects from background) to speed up the further processing.

- Segmentation is often the most difficult problem to solve in the process; there is no universal solution!

- The problem can be made much easier if solved in cooperation with the constructor of the imaging system (choice of sensors, illumination, background etc).
Three Types of Segmentation

- **Classification** – Based on some similarity measure between pixel values. The simplest form is thresholding.

- **Edge-based** – Search for edges in the image. They are then used as borders between regions

- **Region-based** – Region growing, merge & split

Common idea: search for discontinuities or/and similitudes in the image
Thresholding (Global and Local)

- **Global**: based on some kind of histogram: grey-level, edge, feature etc.
 - Lighting conditions are extremely important, and it will only work under very controlled circumstances.

- **Fixed thresholds**: the same value is used in the whole image

- **Local (or dynamic thresholding)**: depends on the position in the image. The image is divided into overlapping sections which are thresholded one by one.
Thresholding

Select an initial estimate for T
Segment the image using T. This produces 2 groups: G_1, pixels with value $>T$ and G_2, with value $<T$
Compute μ_1 and μ_2, average pixel value of G_1 and G_2
New threshold: $T=1/2(\mu_1+\mu_2)$
Repeat steps 2 to 4 until T stabilizes.

Very easy + very fast
Assumptions: normal dist. + low noise
Optimal Thresholding

- Based on the shape of the current image histogram. Search for valleys, Gaussian distributions etc.
Histograms

To love…

…and to hate
Thresholding and illumination

- Solutions:
 - Calibration of the imaging system
 - Percentile filter with very large mask
 - Morphological operators
MR non-uniformity

- median filtering

- thresholding
More thresholding

- Can also be used on other kinds of histogram: grey-level, edge, feature etc.

Multivariate data (⇒ see next lectures)

- Problems:
 - Only considers the graylevel pixel value, so it can leave “holes” in segmented objects.
 - Solution: post-processing with morphological operators
 - Requires strong assumptions to be efficient
 - Local thresholding is better ⇒ see region growing techniques