COMP 4550
Analog - Digital Conversion

Autonomous Agents Lab, University of Manitoba
jacky@cs.umanitoba.ca
http://www.cs.umanitoba.ca/~jacky
http://aalab.cs.umanitoba.ca
Analog to Digital Conversion

- Convert an analog voltage to a digital value
- Schematics
 - Flash converter (directly conversion)
 - Cascading converter (pipeline conversion)
 - Weighing converter (successive approximation)
 - Sigma Delta converter
- Most common is dual-slope counting converter because of high accuracy and low cost
- Requires a certain amount of time
AD Converter: Flash Converter

2-Bit Flash Analog to Digital Converter

Input Quantization (Comparison) Bubble Error Correction Digital Encoding
AD Converter: Successive Approximation

SAR: Successive Approximation Register
AD Conversion: Sigma Delta

Flip flop stores comparator output and adds to voltage on 1st comparator
Clocked at very high frequency (e.g., 64 times oversampling)
ATMega 128 AD Conversion

- 10 bit resolution
- 13 – 260 uSec. conversion time
 - 50KHz to 1 Mhz ADC clock selection
- 8 Multiplexed input channels
 - Can only convert one channel at a time
- VCC, 2.56V Reference voltage
- Free running or single conversion mode
- Interrupt driven conversion
- Interrupt can be set when conversion complete
ATMega 128 AD Converter

- ADMUX
 - select input channel
- REFS0/1
 - select reference voltage
- ADLAR
 - left shift 10 bit result
- MUX4..0
 - select input voltage (32 possibilities)
- 8 single ended voltages
- 8 difference voltages
ATMega128 AD Converter

- **ADCSRA**
- **ADEN**
 - ADC enable
- **ADCSC**
 - Start conversion
 - First conversion takes 25 clock cycles
- **ADATE**
 - ADC Autotrigger enabled
- **ADIF**
 - ADC Interrupt flag
- **ADIE**
 - ADC Interrupt enable flag
- **ADPS[2:0]**
 - ADC prescalar
 - 50 - 200 kHz for full resolution
 - Higher clock rate with less resolution
ATMega128 AD Converter

- **ADCL/H**
 - 16 bit result (may be left shifted)
- **Read L first, then H**
- **ADCSRB**
- **ADTS[2:0]**
 - Autoconversion trigger source
 - Free, ADC, Timer
- **DIDR0**
 - disable digital input to reduce power consumption
- **PRR**
 - Enable ADC in power reduction reg.
ATMega128 AD Routine

- Initialization
 - Setup ADMUX, ADCSRA, ADCSRB
 - Enable MUX input
 - 0..7 is single ended PINF 0..7
- Reference voltage, AREF = VCC
 - No left shift, no interrupts
- Dummy read to stabilize result
- Reading a value
- Polling mode
 - Start conversion
 - Wait for ADIF flag to go low
 - Want to average the result over several readings
ADCSRA = ADCSRA | (1 << ADSC);
while(! ADCSRA & (1 << ADIF));
uint16_t val = 0;

for(i=0;i<3;i++) {
 ADCSRA = ADCSRA | (1 << ADSC);
 while(! ADCSRA & (1 << ADIF));

 tmp = ADCL;
 tmp = tmp | (ADCH << 8);

 val = val + tmp;
}
return val/3;
Taibotics Educational Robot
Light Sensors

- Three light sensors connected to the Taibotics Educational Robot
 - Left: Port F 1
 - Middle: Port F 2
 - Right: Port F3
- Implement an interrupt driven AD conversion for the light sensors so that you can detect the line
- In automatic conversion mode, the conversion will already have started when the ISR is called
- Changing ADMUX in the ISR will take effect in the next interrupt